Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
نویسندگان
چکیده
منابع مشابه
Feature Selection via Block-Regularized Regression
Identifying co-varying causal elements in very high dimensional feature space with internal structures, e.g., a space with as many as millions of linearly ordered features, as one typically encounters in problems such as whole genome association (WGA) mapping, remains an open problem in statistical learning. We propose a block-regularized regression model for sparse variable selection in a high...
متن کاملNonparametric regression for functional data: automatic smoothing parameter selection
We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cr...
متن کاملGradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation*
Data-driven bandwidth selection based on the gradient of an unknown regression function is considered. Uncovering gradients nonparametrically is of crucial importance across a broad range of economic environments such as determining risk premium or recovering distributions of individual preferences. The procedure developed here is shown to deliver bandwidths which have the optimal rate of conve...
متن کاملFunctional regression modeling via regularized Gaussian basis expansions
We consider the problem of constructing functional regression models for scalar responses and functional predictors, using Gaussian basis functions along with the technique of regularization. An advantage of our regularizedGaussian basis expansions to functional data analysis is that it creates a much more flexible instrument for transforming each individual’s observations into functional form....
متن کاملRobust smoothing: Smoothing parameter selection and applications to fluorescence spectroscopy
Fluorescence spectroscopy has emerged in recent years as an effective way to detect cervical cancer. Investigation of the data preprocessing stage uncovered a need for a robust smoothing to extract the signal from the noise. Various robust smoothing methods for estimating fluorescence emission spectra are compared and data driven methods for the selection of smoothing parameter are suggested. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2006
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2005.12.009