Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection via Block-Regularized Regression

Identifying co-varying causal elements in very high dimensional feature space with internal structures, e.g., a space with as many as millions of linearly ordered features, as one typically encounters in problems such as whole genome association (WGA) mapping, remains an open problem in statistical learning. We propose a block-regularized regression model for sparse variable selection in a high...

متن کامل

Nonparametric regression for functional data: automatic smoothing parameter selection

We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cr...

متن کامل

Gradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation*

Data-driven bandwidth selection based on the gradient of an unknown regression function is considered. Uncovering gradients nonparametrically is of crucial importance across a broad range of economic environments such as determining risk premium or recovering distributions of individual preferences. The procedure developed here is shown to deliver bandwidths which have the optimal rate of conve...

متن کامل

Functional regression modeling via regularized Gaussian basis expansions

We consider the problem of constructing functional regression models for scalar responses and functional predictors, using Gaussian basis functions along with the technique of regularization. An advantage of our regularizedGaussian basis expansions to functional data analysis is that it creates a much more flexible instrument for transforming each individual’s observations into functional form....

متن کامل

Robust smoothing: Smoothing parameter selection and applications to fluorescence spectroscopy

Fluorescence spectroscopy has emerged in recent years as an effective way to detect cervical cancer. Investigation of the data preprocessing stage uncovered a need for a robust smoothing to extract the signal from the noise. Various robust smoothing methods for estimating fluorescence emission spectra are compared and data driven methods for the selection of smoothing parameter are suggested. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2006

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2005.12.009